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Abstract: In recent years there has been an increasing need to improve satellite attitude control
performance in terms of agility and attitude accuracy in large-angle attitude maneuvers. To achieve
such control performance, single-gimbal control moment gyros (SGCMGs) should be mounted as
modern-type actuators. Conventionally, based on the torque command calculated by the attitude
control system of the satellite, SGCMGs were controlled by solving inverse kinematics through a
pseudo inverse matrix steering law. However, in such a control system structure, it may be difficult to
obtain the desired torque required by the attitude control system because of the singularity problem of
SGCMGs. Furthermore, with respect to implementation, since the condition number of the Jacobian
matrix of SGCMG becomes extremely large in the singularity, the numerical calculation error of the
pseudo inverse matrix increases greatly. Therefore, we propose an overall control system that can
solve above-described problems and the state-dependent Riccati equation (SDRE) control system
that integrates the satellite and SGCMG system. The proposed optimal control system, which does
not solve the pseudo inverse matrix, can realize gimbal angle guidance by gimbal angle feedback
and singularity avoidance/escape using the biased weighting matrix. In the numerical simulation,
the usefulness of proposed system is shown in comparison with the conventional system.

Keywords: satellite; attitude control; state-dependent Riccati equation control; single-gimbal control
moment gyro; biased weighting matrix

1. Introduction

In recent years, there has been a growing demand for earth observation satellites equipped with
highly accurate observation sensors to capture high-resolution images of certain points on the ground.
For example, earth observation satellites including IKONOS which is launched in 1999, have made
emergency observations to determine the detailed situation of disaster areas, and made efforts to utilize
this information to prevent secondary disasters and aid in prompt reconstruction. In order to direct
the sensors to the ground in comparison with sweeping the earth’s surface, such earth observation
satellites need to improve their agility in large-angle attitude maneuvers. Moreover, methods that
enable highly accurate attitude determination by online sensors such as the star tracker (ST) and
inertial measurement unit (IMU), as well as global positioning system (GPS) based methods [1,2] have
been proposed. Thus, high accuracy of attitude control is also needed using this information.

To achieve the above-described agile large-angle attitude maneuver, a single-gimbal control
moment gyro (SGCMG) should be mounted as a modern-type actuator. The SGCMG (as shown in
Figure 1a) is an internal force actuator that outputs a large torque owing to the gyro effect generated
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by rotating a gimbal. Normally, from the viewpoint of the redundancy and symmetry of angular
momentum, the SGCMG should be equipped on a four-skew array like a pyramid, as shown in
Figure 1b. In the conventional works on agile attitude maneuvers of a satellite using SGCMGs as
actuators, the gimbal angular velocity is calculated by solving the pseudo inverse matrix of the
SGCMGs Jacobian matrix from the torque command value calculated by the satellite attitude control
system and input to the SGCMGs system (upper part of Figure 2). This control system structure has
been extensively studied because of the shape of the Jacobian matrix with respect to the SGCMGs and
the strong nonlinearity depending on its time variation. As usual, the singularity problem always
exists for SGCMGs during the large-angle maneuvering of satellites. In the singularity, input may not
be sometimes required, in which the possible output direction is degenerated owing to the combination
of the gimbal angle, as shown in Figure 3. Therefore, it was necessary to design the attitude control
system and the SGCMG control system separately.
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As a countermeasure to the singularity problem, a number of avoidance/escape steering laws
have been proposed. The singularity avoidance law of null motion by the projection matrix [3] and
Jacobian cofactor [4] were firstly proposed, followed by a steering law for avoiding singularity to
reduce the error of the output torque [5]. After that, a nondiagonal singularity robust steering law to
escape the singular surface with torque error [6] and a generalized singularity robust (GSR) steering
law [7], as well a method to make it possible to adjust the design parameters of the GSR steering law [8]
were put forward. Furthermore, methods combining multiple singularity avoidance/escaping steering
laws [9,10] were proposed. Subsequently, methods to avoid singularity by feed-forward inputs using a
Fourier basis algorithm [11], path planning of angular momentum [12] or gimbal angle [13] appeared.
In such conventional methods, it is possible that the desired control torque cannot provide output to the
satellite determined by the attitude control system, and it cannot guarantee the attitude stability of the
satellite under the singularity of SGCMGs. These issues caused by the singularity avoidance/escape
cannot be taken into account in the attitude control system. Consequently, the possibility of adverse
effects on the robustness of the attitude control system cannot be excluded.

Moreover, it is mathematically difficult to find a correct solution because the solution by the
pseudo inverse method is the maximum likelihood solution, and the condition number of the matrix
becomes extremely large near singularity (Jacobian matrix is ill-conditioned). Thus, an accurate
solution cannot be calculated in some cases when the Jacobian matrix is ill-conditioned because
calculation errors owing to round-off errors are greatly amplified [14,15]. As a countermeasure,
regularization methods of the matrix for reducing calculation errors have been proposed, but the
calculation costs tend to be high because repetitive calculation is necessary [14–16]. Considering actual
operation, rounding errors are likely to be included because of the restrictions on the performance
of the on-board computer. In addition, since the Jacobian matrix is time-varying, it is necessary to
solve the regularization method in every control cycle. Therefore, it is considered that it is difficult
to calculate an accurate solution of the pseudo inverse method in the on-board computer under a
singularity where the calculation errors become large. Consequently, it is considered that a control
system for calculating the control input to the SGCMGs is necessary without solving the pseudo
inverse matrix.

In view of the above background, an attitude control system that can generate the gimbal angular
velocity input without solving inverse kinematics (as the main control system), is required, as shown
in lower part of Figure 2. Accordingly, we will integrate the satellite and SGCMGs and design
a model with the gimbal angular velocity as the control input. To realize this, state-dependent
linear representation (SDLR) in the state-dependent Riccati equation (SDRE) controller [17,18] is used.
This proposed control system is able to gain attitude stability and robustness even in a singularity
because the optimal gimbal angular velocity input is guaranteed by the SDRE controller. Furthermore,
by designing SDLR with an error representation, it is possible to guide to the gimbal angle, which is
advantageous for the next attitude maneuver. Additionally, singularity avoidance/escape steering is
explicitly considered by taking into account the relation between the biased state-dependent weighting
(BSDW) matrix for the gimbal angular velocity input and the SGCMG steering with respect to the
maneuver axis. This steering of gimbals is realized by adding to each SGCMG with bias. In the
numerical analysis, we verify the effectiveness of the agile large-angle attitude maneuver by the
proposed control system consisting of an SGCMG-integrated satellite model (SISM) and BSDW.
In addition, the analysis shows that the convergence to the target satellite attitude is guaranteed
by the optimality of the gimbal angular velocity input. Furthermore, we verify the robustness against
the moment of inertia which is likely to contain an error in model identification on the ground.
However, a general robustness analysis of SDRE has not been determined. Therefore, as an initial
study, the true values used for updating the state quantity of the plant are set in several patterns with
respect to the identification values.
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2. Materials and Methods

2.1. Modeling

2.1.1. Formulation of Satellite Attitude Maneuvers Using SGCMG

The satellite attitude in the body coordinate system is represented by quaternion q, and time
derivative

.
q is expressed by the following equation:

.
q =

1
2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 −ω2 −ω1 0

q =
1
2

ω̃q (1)

where ω = [ ω1 ω2 ω3 ]
T

is the satellite angular velocity.
The rotation of a rigid-body satellite in the body coordinate system is defined by the Euler

equation including the cross product calculation “×” as follows:

I
.

ω + ω× Iω = T (2)

where I is the moment of inertia matrix of the satellite. Control torque vector T is produced by the
SGCMG momentum exchange. In this paper, disturbance torques are assumed to be negligible, and the
nonlinear rotating dynamics of the satellite are expressed as[ .

q(t)
.

ω(t)

]
=

[
1
2 ω̃(t)q(t)

−I−1(ω(t)× Iω(t))

]
+

[
0

I−1

]
T(t) (3)

Now, a relation between control torque T and generated torque Tc by the SGCMG is expressed as

T = −Tc −ω× h (4)

where h is the angular momentum vector of the SGCMG. The time derivative of the angular momentum
of the SGCMG is equal to the output torque Tc, and is expressed by the following equation.

.
h = h0A(δ)

.
δ ≡ Tc (5)

where h0 is the angular momentum of the SGCMG wheel,
.
δ is the gimbal angular velocity vector of

the SGCMGs, and A(δ) is a Jacobian matrix. The size of the Jacobian matrix representing how to steer
the SGCMGs differs depending on the number of mountings. In this research, from the viewpoint
of redundancy and the symmetry of the angular momentum, the SGCMGs should be equipped on a
four-skew array like a pyramid, as shown in Figure 1b.

Therefore, the Jacobian matrix A(δ) is expressed as

A(δ) =

 −cβ cos δ1 sin δ2 cβ cos δ3 − sin δ4

− sin δ1 −cβ cos δ2 sin δ3 cβ cos δ4

sβ cos δ1 sβ cos δ2 sβ cos δ3 sβ cos δ4

 (6)

where β is the skew angle of four SGCMGs, sβ = sin β, and cβ = cos β. From Equation (3) to
Equation (5), the rotation of a satellite equipped with SGCMGs is expressed as[ .

q(t)
.

ω(t)

]
=

[
1
2 ω̃(t)q(t)

−I−1{ω(t)× (Iω(t) + h(δ))}

]
+

[
0
−I−1

]
Tc(t) (7)
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2.1.2. Singularity Problem of SGCMGs

When SGCMGs are in a singularity, the direction in which torque can be output degenerates to
two dimensions or fewer, as shown in Figure 3. Thus, when the attitude maneuver direction and the
degenerate torque direction are the same, this adversely affects the agility of maneuver. The singularity
in the dimension of angular momentum (as shown in Figure 4a–c) is expressed as

rank(A(δ)) < 3 or rank(A(δ)A(δ)T) < 3 ⇔ m = det(A(δ)A(δ)T) = 0 (8)

where m is a singularity parameter, indicating that it is closer to a singularity when it is closer to 0.
In this paper, we assume a singularity when m ≤ 0.3. There are two types of singularities: internal
and external. An internal singularity depends on the gimbal angle, and an external singularity occurs
when the output torque is saturated at the performance limit. The external singularity is the outermost
part of the singular surface, as shown in Figure 4a–c, and the internal singularity is found inside the
external singularity.
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Furthermore, the shape of the singular surface differs depending on the skew angle, as shown
in Figure 4a–c. In actual operation, β = 54.74 degrees (shown in Figure 4b) is often selected from the
symmetry of the angular momentum. In conventional attitude control, the gimbal angular velocity
input to the SGCMG system is calculated by solving the following steering law from the torque
calculated in Equation (7):

.
δc = A(δ)T(A(δ)A(δ)T)

−1
Tc (9)

In conventional singularity avoidance/escape steering laws, an error parameter or a null vector
is added to Equation (9). Such laws have been studied because the Jacobian matrix is not a square
matrix and rank degenerates in the singularity. However, as the gimbal steering is not taken into
consideration in the attitude controller, the robustness may be adversely affected. Thus, the design of
the singularity avoidance/escape steering laws must be considered by the attitude controller.

2.2. The State-Dependent Riccati Equation (SDRE) Method

First, the nonlinear equation is given by

.
x = f(x) + g(x)u, x(0) = x0 (10)

Let us suppose that the origin x(0) = 0 is an equilibrium point of the system. The control input u
is such that the following functional J is minimized:

J =
1
2

∫ ∞

0

(
x(t)TQ(x)x(t) + u(t)TR(x)u(t)

)
dt (11)
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where Q(x) ≥ 0 is the state-dependent weighting (SDW) matrix of state vector x, R(x) > 0 is the SDW
matrix of input vector u, and both of them depend on state x. To design the controller, if there is an
optimal index ϕ(x) for the quadratic form evaluation function xTPx, its mathematical form can be
rewritten in the form of a positive definite symmetric matrix P as follows:

ϕ→ xTPx, f(x)→ Ac(x)x, g(x)→ Bc(x) (12)

where a system
.
x = Ac(x)x + Bc(x)u(x) is the SDLR, and the SDLR has a degree of freedom of

modeling. Moreover, Ac(x), Bc(x) are the state-dependent coefficient (SDC) matrices that depend on
state x.

This procedure forms the so-called extended linearization control method. We can now define the
control input u(x) such that

u(x) = −R(x)−1Bc(x)
TP(x)x (13)

where P(x) is a solution of the following SDRE:

Ac(x)
TP(x) + P(x)Ac(x)− P(x)Bc(x)R(x)−1Bc(x)

TP(x) + Q(x) = 0 (14)

Figure 5 shows the summary of the above-described flow. In conclusion, the SDRE solution
to the nonlinear regulator is a generalization of the time-invariant linear quadratic regulator (LQR)
problem, where the matrices are state-dependent [18]. From an operating point of view, at each time
step, the method treats SDC matrices as constants because of the “freezing” of the state. Therefore,
by solving the LQR problem for each control cycle, it is possible to easily obtain the solution.
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2.3. Design of Proposed Control System

2.3.1. Design of the SGCMG-Integrated Satellite Model (SISM)

In this section, we formulate the SISM [19] proposed by authors. The SISM is possible through the
design of an optimal gimbal angular velocity input considering the attitude maneuver and singularity
avoidance with gimbal angle guidance at the same time. To realize the SISM, the gimbal angle and
gimbal angular velocity are added to the state vector to design an SDLR by error dynamics.

To design the SISM, we rewrite Equation (7) into an error representation, as follows:[ .
qe(t).
ωe(t)

]
=

[
1
2 Ze(t)ωe(t)

−I−1{ωe(t)× (Iωe(t) + he(δ))}

]
+

[
0
−I−1

]
Tc(t) (15)

where
.
qe is the quaternion error vector, ωe is the satellite angular velocity error vector, he is the angular

momentum error of the SGCMGs, and Ze is the error matrix of the quaternion.
ωe, he, and Ze are expressed as

ωe(t) = ω(t)−ωr (16)

he(δ) = h(δ)− hr (17)
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Ze(t) =


−qe1(t) −qe2(t) −qe3(t)
qe0(t) −qe3(t) qe2(t)
qe3(t) qe0(t) −qe1(t)
−qe2(t) qe1(t) qe0(t)

 (18)

where target angular velocity of satellite ωr and SGCMGs angular momentum hr are constant values
because agile observation satellite is usually operated as a rest-to-rest maneuver. Such a maneuver
depends on all states being in a steady state at the initial and terminal state of the maneuver.

Therefore, Equation (15) is rewritten by Equation (12) as follows:[ .
qe.
ωe

]
=

[
κU 1

2 Ze

03 × 4 −I−1(W + H)

][
qe
ωe

]
+

[
04 × 3

−I−1

]
Tc (19)

where U is a 4 × 4 unit matrix, κ is a very small negative scalar for the stability of the SDRE
controller [20], W is a coupling matrix between the satellite angular velocity and the moment of inertia
of the satellite, and H is a coupling matrix between the satellite angular velocity and the angular
momentum of the SGCMG. W and H are defined as

W =

 0 −ωe3 ωe2

ωe3 0 −ωe1

−ωe2 ωe1 0

I (20)

H =

 0 he3 −he2

−he3 0 he1

he2 −he1 0

 (21)

To explicitly consider the singularity of SGCMGs, control torque input Tc needs to be converted
to gimbal angular velocity

.
δc. Assuming that a gimbal motor is a first-order lag system with time

constant τ, the gimbal angle error is δe = δ− δr and
..
δe is defined as follows:

..
δe =

.
δc −

.
δe

τ
(22)

Therefore, the state equation of the gimbal motor of SGCMGs is expressed as[ .
δe..
δe

]
=

[
04 × 4 U
04 × 4 − 1

τ U

][
δe.
δe

]
+

[
04 × 4

1
τ U

]
.
δc (23)

Consequently, the SISM combined Equations (5), (19), and (23) using κ is defined as follows:

.
x = Ac(x)x + Bc(x)u

.
qe.
ωe.
δe..
δe

 =


κU 1

2 Ze 04 × 4 04 × 4

03 × 4 −I−1(W + H) 03 × 4 −h0I−1A′(δe)

04 × 4 04 × 3 κU U
04 × 4 04 × 3 04 × 4 − 1

τ U




qe
ωe

δe.
δe

+


04 × 4

03 × 4

04 × 4
1
τ U

 .
δc

(24)

where A′ is another representation of A and is expressed as

A′(δe) = A(δ)

= A( δe + δr) (∵ δe = δ(t)− δr)
(25)

From the above, the optimal gimbal angular velocity input for an attitude maneuver is calculated
by the SDLR of the SGCMG-integrated satellite, and this SISM is able to avoid a singularity by setting
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the target gimbal angle δr. As we mentioned above, the proposed SISM is able to explicitly design a
gimbal angular velocity as a control input.

In this model, controllability is guaranteed by κ even under the singularity. It is necessary to
verify robustness against model uncertainty by Monte Carlo analysis or the like because a formal
robustness analysis of SDRE does not yet exist [18]. However, as it is the same as solving the LQR
for every control cycle, it is considered that the robustness against the uncertainty of the model and
stability margin have a same or higher performance to LQR.

2.3.2. Design of Biased State-Dependent Weighting (BSDW) Matrix of Input R

The proposed SDLR of the SISM can explicitly design a gimbal angular velocity as a control input,
and each gimbal angular velocity input can be individually designed. Therefore, we propose the
BSDW matrix of R for the singularity avoidance/escape via the singularity parameter m, which is
dependent on the gimbal angle. Here, we use the fact that the singularity parameter gets closer to 0 as
it approaches the singularity.

First, the relation between the attitude maneuver axis and the number of SGCMGs that contribute
greatly to the attitude maneuver is shown in Table 1. For the four-skew array SGCMG system,
the SGCMGs steer symmetrically owing to the symmetry of the angular momentum. From Figure 4b,
a singularity exists symmetrically, and it can be seen that the center of this figure is in a zero-momentum
state. Moreover, SGCMG with a number which greatly contributes to attitude maneuver is prone to a
singularity state.

Table 1. Relationship between the maneuver axis and gimbal steering number 1.

Maneuver Axis Gimbal Steering Number

roll #1 and #3
pitch #2 and #4
yaw all SGCMGs

roll and pitch all SGCMGs
pitch and yaw all SGCMGs
yaw and roll all SGCMGs

roll, pitch, and yaw all SGCMGs
1 single-gimbal control moment gyros (SGCMGs).

The BSDW of the roll axis is shown in this paper because agile satellites such as the Earth
observation satellites usually maneuver with respect to the roll axis. In the roll axis maneuver,
SGCMG1 and SGCMG3 symmetrically steer, and SGCMG2/SGCMG4 do not steer by basic pseudo
inverse steering law.

Therefore, when the proposed BSDW is close to a singularity, it gives a bias to the weightings
between the SGCMG2 and SGCMG4, which are not steered. Thus, singularity avoidance/escape is
performed by outputting the torque for other attitude maneuver axes. It is noted that stability can
always be guaranteed because it is taken into account explicitly in the proposed control system. On the
other hand, the conventional avoidance/escaping laws also steer the second and fourth SGCMG, but
such steering laws cannot guarantee the stability of attitude control because it is not considering by
attitude controller of satellite.

Next, for formulation of the BSDW, a relationship between the angular momentum that can be
held by asymmetrically steering SGCMG 2 and SGCMG 4 is shown in Figure 6. From Figure 6, it can
be seen that through the asymmetric steering of SGCMGs, which does not contribute to the attitude
maneuver, angular momentum can be held on the attitude maneuver axis. In the positive direction of
the roll axis maneuver, the angular momentum of SGCMGs is negative, and in the negative direction
of the roll axis maneuver, the angular momentum of SGCMGs is positive. This is because the SDRE
control system using SISM calculates the optimal control input that maximizes the resource of the
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output torque. Therefore, by designing the BSDW in consideration of the relationship between the
direction of the attitude maneuver and the gimbal angles of SGCMG 2 and SGCMG 4, singularity
avoidance/escape steering suitable for agile attitude maneuvers becomes possible. Figure 7 shows a
brief summary of this relationship. Although not shown in this paper, in the case of the yaw axis and
multiple axis maneuvers there is no symmetry in steering, but BSDW with SISM can also avoid/escape
the singularity. This is because the BSDW can control the output of the singularity avoidance/escaping
steering suitable for each attitude maneuver axis as shown in Figure 6.
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Finally, we show a selection method of BSDW satisfying the above relationship:

R(δ) = diag
(

R1 R2 R3 R4

)
= diag

(
wR0 R2(δ) wR0 R4(δ)

) (26)
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i f 0 ≤ δm
2 < 90{
R2 = w+

R , R4 = w−R
(
δm

2 ≤ δm
4 ≤ 360− δm

2
)

R2 = w−R , R4 = w+
R

(
δm

4 < δm
2 or 360− δm

2 < δm
4
)

i f 90 ≤ δm
2 < 180{

R2 = w+
R , R4 = w−R

(
δm

4 < δm
2 or 360− δm

2 < δm
4
)

R2 = w−R , R4 = w+
R

(
δm

2 ≤ δm
4 ≤ 360− δm

2
)

f 180 ≤ δm
2 < 270{

R2 = w+
R , R4 = w−R

(
δm

4 < 360− δm
2 or δm

2 < δm
4
)

R2 = w−R , R4 = w+
R

(
360− δm

2 ≤ δm
4 ≤ δm

2
)

f 270 ≤ δm
2 < 360{

R2 = w+
R , R4 = w−R

(
360− δm

2 ≤ δm
4 ≤ δm

2
)

R2 = w−R , R4 = w+
R

(
δm

4 < 360− δm
2 or δm

2 < δm
4
)

(27)

where δm
2 and δm

4 are gimbal angle of SGCMG2 and SGCMG4 when m = 0.3. It is assumed that the
magnitude and sign of the gimbal angle are normalized from 0 to 360 degrees using the periodicity of
trigonometric function.

The weighting functions w+
R and w−R , as shown in Equations (28) and (29), are designed by a

sigmoid function where the difference between w+
R and w−R becomes significantly larger when m < 0.3.

When the difference between the weighting functions is large, the control input is calculated such that
the other steering amount increases so that one of the steering amounts of SGCMG 2 and SGCMG 4 is
decreased. Thus, w+

R and w−R make it possible to realize the concept of singularity avoidance/escape
suitable for the direction of the attitude maneuver axis described above.

w+
R (δe) = ε + wR0

1 +
2

1 + exp
(

αm(δe)
2
)
 (28)

w−R (δe) = ε + wR0

−1 +
2

1 + exp
(
−αm(δe)

2
)
 (29)

where ε is a very small positive scalar for R > 0, wR0 is a positive scalar of basic weighting function,
and α is a positive scalar to determine a sensitivity of w+

R and w−R . In this paper, we determine wR0 = 1
and α = 50. Therefore, w+

R and w−R are shown in Figure 8.
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2.3.3. Design of State-Dependent Weighting (SDW) Matrix of State Q

First, the SDW matrix of state is expressed as

Q = diag
(

Qqe
Qωe Qδe Q .

δe

)
(30)
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where Qqe
is a SDW of quaternion error qe, Qωe is a SDW of satellite angular velocity error ωe, Qδe

is a SDW of gimbal angle error, and Q .
δe

is a SDW of gimbal angular velocity error. By setting Qqe
as

large, agility increases, and by setting Qωe as large, the convergence to a target attitude angle increases.
Although one study [21] shows that it is possible to achieve both agility and convergence by making
the SDW of state state-dependent, in this paper, we use constant values for simplicity.

Finally, the SDW matrix of state is expressed as

Qqe
= diag

(
0 1 1 1

)
× 106

Qωe = diag
(

5 5 5
)
× 106

Qδe = diag
(

1 1 1 1
)

Q .
δe

= diag
(

0 0 0 0
) (31)

3. Results and Discussion

3.1. Conditions for Numerical Simulation of Comparison with the Conventional Method

A large-angle rest-to-rest maneuver simulation verifies the control performance of the proposed
control system consisting of SISM and BSDW. Additionally, by comparing the proposed control
system with the conventional steering law [10], we verify the usefulness of the proposed method
from the viewpoint of the agility of attitude maneuvering and the performance of singularity
avoidance/escape and gimbal angle guidance. The conventional steering law can also provide
singularity avoidance/escape and gimbal angle guidance by torque producing and null motion.
In addition, an SDRE is adopted as the attitude controller to Equation (19), and all design variables of
the conventional method are selected so as to maneuver in the shortest time.

The settling condition of the satellite attitude is set to ± 0.003 degrees, and the parameters are
listed in Table 2.

Table 2. Parameters and values for the numerical simulation.

Parameters Symbols Values

moment of inertia of satellite I diag
(

5000 5000 3000
)

kgm2

angular momentum of SGCMG h0 75 Nms
target angular velocity of satellite ωr [ 0 0 0 ]

T deg/s
initial gimbal angle - [ 0 0 0 0 ]

T deg
target gimbal angle δr [ −60 60 −60 60 ]

T deg
initial satellite euler angle - [ 0 0 0 ]

T deg
target satellite euler angle - [ 60 0 0 ]

T deg
target gimbal angular velocity

.
δr [ 0 0 0 0 ]

T deg/s
target angular momentum hr [ 0 0 0 ]

T Nms
very small negative scalar κ −10−9

very small positive scalar ε 10−5

time constant of gimbal motor τ 0.3 s
skew angle of four SGCMGs β 54.74 deg

Maximum gimbal angular velocity - 1 rad/s

3.2. Results of Numerical Simulation of Comparison with the Conventional Method

Figure 9 and Figure 11 show the results of the conventional method, and Figure 10 and Figure
12 show the results of the proposed method. Moreover, results of attitude settling time and terminal
gimbal angle are shown in Table 3.
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Table 3. Results of numerical simulation.

Evaluation Index Comparative Method Proposed Method

attitude settling time (s) 56.7 52.9
terminal gimbal angle error

(degrees) [ 0.5 −0.6 −0.4 0.8 ]
T

[ 0.5 0.4 −0.4 0.7 ]
T

First, it can be seen from Figures 9 and 10 that the both conventional and proposed method can
avoid an internal singularity. After the avoidance, it is confirmed that it reaches the external singularity
which is the performance limit. However, in the conventional method, the amount of movement in
the angular momentum space is larger than in the proposed method. This is an undesirable behavior
because the possibility of falling into another singularity after the singularity avoidance/escape
becomes high.

Next, as shown in Figures 11e and 12e, the proposed method has a longer time to hold the
maximum angular momentum that SGCMGs can have. As a result, since it is possible to lengthen the
attitude maneuver time at the maximum angular velocity, this is advantageous for an agile attitude
maneuver. Furthermore, from Figures 11c and 12c, the time to reach the maximum satellite angular
velocity is about 1.5 s faster in the proposed method. This is because gimbal steering for singularity
avoidance/escape suitable for the direction of the attitude maneuver axis by the BSDW (in Figure 12g)
is performed near the singularity. From the above, it is possible to shorten the attitude maneuver
time of the proposed method by 3.8 s with respect to the comparison method, as shown in Table 3.
Therefore, it was shown that the proposed method is more suitable for agile maneuvering.



www.manaraa.com

Appl. Sci. 2018, 8, 140 13 of 18
Appl. Sci. 2018, 8, 140 13 of 18 

  
(a) (b)

  

(c) (d)

  
(e) (f)

  

(g) (h)

Figure 11. Results of the conventional method as: (a) Time history of the Euler angle; (b) Time history 
of torque by SGCMGs; (c) Time history of the satellite angular velocity; (d) Time history of the gimbal 
angle; (e) Time history of the angular momentum of SGCMGs; (f) Time history of the gimbal angular 
velocity; (g) Time history of biased state-dependent weighting (BSDW); (h) Time history of the 
singularity parameter. 

Figure 11. Results of the conventional method as: (a) Time history of the Euler angle; (b) Time
history of torque by SGCMGs; (c) Time history of the satellite angular velocity; (d) Time history of the
gimbal angle; (e) Time history of the angular momentum of SGCMGs; (f) Time history of the gimbal
angular velocity; (g) Time history of biased state-dependent weighting (BSDW); (h) Time history of the
singularity parameter.
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Figure 12. Results of the proposed method as: (a) Time history of the Euler angle; (b) Time history of
the torque by SGCMGs; (c) Time history of the satellite angular velocity; (d) Time history of the gimbal
angle; (e) Time history of the angular momentum of SGCMGs; (f) Time history of the gimbal angular
velocity; (g) Time history of the BSDW; (h) Time history of singularity parameter.
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As shown in Figure 11b, torque is outputted to the roll axis and the other axis. Therefore, since it
is not taken into account in the attitude controller, there is a possibility that the stability might be
adversely affected. On the other hand, as shown in Figure 12b the proposed method also outputs the
torque to the other axes, but because it is realized by optimal input from the attitude controller, there is
no adverse effect on the stability.

Moreover, as shown in Table 3, the gimbal angle guidance of both methods is performed well.
This is because an optimal distribution of gimbal steering for the attitude maneuver and gimbal angle
guidance is performed in both methods. From the above, it is shown that the proposed method is
effective for agile attitude maneuvers in comparison with the conventional method.

3.3. Conditions for Numerical Simulation with Respect to an Uncertainty of the Plant

In this section, we verify the robustness against the moment of inertia which is likely to contain
an error in model identification on the ground. However, a general robustness analysis of SDRE has
not been determined. Therefore, as an initial study, the true values used for updating the state quantity
of the real plant are set in four patterns with respect to the identification value. Since the SDLR of
the proposed method depends on the state and the control gain of SDRE also changes depending on
the state, it is possible to verify the robustness to uncertainty including the time-variant case by this
simplified simulation.

The true value of the moment of inertia is shown in the Table 4, where the error of the
true value with respect to the identification value is assumed as 20% of the identification value
diag (5000 5000 3000) kgm2. As the value used in the SDRE controller, the value of identification
diag (5000 5000 3000) kgm2 is used for all of cases (a) to (e). Therefore, a control input calculated with
the identification value different from the actual moment of inertia of the plant is input to the plant.

Table 4. Case of moment of inertia used for the real plant when: (a) The identification value and true
value match (the above simulation result); (b) All axes are hard to rotate; (c) The roll axis is hard to
rotate, and the other axes are easy to rotate; (d) The roll axis is easy to rotate, and the other axes are
hard to rotate; and (e) All axes are easy to rotate.

Cases True Values of the Real Plant (kgm2)

(a) diag
(

5000 5000 3000
)

(b) diag
(

6000 6000 3600
)

(c) diag
(

6000 4000 2400
)

(d) diag
(

4000 6000 3600
)

(e) diag
(

4000 4000 2400
)

3.4. Results of Numerical Simulation with Respect to an Uncertainty of the Plant

Table 5 shows attitude settling time and terminal gimbal angle error in cases (a) to (e).

Table 5. Results of numerical simulation in cases (a) to (e).

Cases Attitude Settling Times (s) Terminal Gimbal Angle Errors (Degrees)

(a) 52.9 [ 0.5 0.4 −0.4 0.7 ]
T

(b) 56.3 [ −0.4 0.7 0.6 −0.7 ]
T

(c) 56.3 [ −0.4 0.6 0.6 −0.6 ]
T

(d) 49.7 [ 0.5 −0.7 −0.4 −0.4 ]
T

(e) 49.7 [ 0.6 −0.7 −0.5 −0.6 ]
T

In cases (b) and (c), the settling times are slower than in case (a), because it is difficult to maneuver
with respect to roll axis. On the other hand, since the cases (d) and (e) are easy to maneuver with
respect to the roll axis, the settling time is faster than in case (a). However, since the attitude has settled
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in every case, it is considered that the robustness of proposed method against the moment of inertia
is high. This robustness can also be confirmed from the fact that the performance of gimbal angle
guidance shows almost the same performance as case (a) in all cases.

4. Conclusions

In this study, we integrated a satellite and SGCMGs and designed a model with the gimbal
angular velocity as input. We showed the proposed SISM and BSDW can generate optimal gimbal
angular velocity input without solving inverse kinematics. As the target gimbal angle can be explicitly
designed by the proposed control system, it can guide the initial gimbal angle, which is advantageous
for the next mission. Numerical simulation showed that the singularity avoidance performance up to
the target gimbal angle, and the guidance performance of the gimbal angle, are improved with respect
to the conventional method owing to the optimality of the gimbal angular velocity input. Moreover,
we showed that it is possible to perform agile attitude maneuvers considering the next mission.

Although this paper assumes that the satellite is a rigid body, robustness against external
disturbances such as solar array paddles and fuel sloshing should also be evaluated. This is a task to
be verified in the future. However, we demonstrated that the vibration of solar array paddles, which
is not considered in the SDRE controller, can be stabilized by the state-dependent weight matrix as
shown in [21]. Therefore, even with the proposed method, it can be stabilized in the same way, and it
is considered that it also has the robustness against the above disturbances.
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Nomenclature

Ω Wheel speed of the SGCMG
ĝ Gimbal axis vector of the SGCMG
ĝi i-th gimbal axis vector of the SGCMG (i = 1, 2, 3, 4)
β Skew angle of four SGCMGs
δi i-th gimbal angle of the SGCMG (i = 1, 2, 3, 4)
r Reference of the state vector
x State vector
Tre f Reference of the torque vector
T Torque vector produced by the angular momentum exchange
Tc Control torque input vector by the controller
..
δ Gimbal angular acceleration vector
.
δre f Reference of the gimbal angular velocity vector
.
δ Gimbal angular velocity vector
.
δc Control gimbal angle input vector by the controller
δ Gimbal angle vector
..
δe Gimbal angular acceleration error vector
.
δe Gimbal angular velocity error vector
δe Gimbal angle error vector
δr Target gimbal angle vector
A(δ) Jacobian matrix of SGCMGs depending on δ

A′(δe) Jacobian matrix of SGCMGs depending on δe

m Singularity parameter
q Quaternion vector of the satellite attitude
qe Quaternion error vector of the satellite attitude
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.
q Time derivative of q
.
qe Time derivative of qe
ωr Target angular velocity vector of the satellite
ω Angular velocity vector of the satellite
ωe Angular velocity error vector of the satellite
.

ω Time derivative of ω
.

ωe Time derivative of ωe

I Moment of inertia matrix of the satellite
hr Target angular momentum vector of the SGCMG
h Angular momentum vector of the SGCMG
he Angular momentum error vector of the SGCMG
h0 Angular momentum matrix of the SGCMG wheel
f(x), g(x) Nonlinear function depending on x
x0 Equilibrium point of the system
u Control input vector
J Infinite-time performance criterion
Q(x), R(x) State-Dependent Weighting matrices
ϕ(x) Optimal index
P Solution matrix of SDRE
Ac(x), Bc(x) State-Dependent Coefficient (SDC) matrices
Ze Error matrix of q
U Unit matrix
W Coupling matrix between ω and I
H Coupling matrix between ω and h
τ Time constant of gimbal motor
κ Very small negative scalar
wR0, ε, α Design parameters of w+

R and w−R
w+

R , w−R Weighting functions of the proposed method
δm

2 , δm
4 Gimbal angle of SGCMG2 and SGCMG4 when m = 0.3
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